APPROVALS
- UL recognised, File No. E91231 under Package System 'KK'

'X' SPECIFICATION APPROVALS
- VDE 0884 in 3 available lead forms : -
 - STD
 - G form
 - SMD approved to CECC 00802

DESCRIPTION
The MOC302_ series are optically coupled isolators consisting of a Gallium Arsenide infrared emitting diode coupled with a light activated silicon bilateral switch performing the functions of a triac mounted in a standard 6 pin dual-in-line package.

FEATURE
- Options :
 - 10mm lead spread - add G after part no.
 - Surface mount - add SM after part no.
 - Tape&reel - add SMT&R after part no.
- High Isolation Voltage \(5.3\text{KV}_{\text{RMS}},7.5\text{KV}_{\text{PK}}\)
- 400V Peak Blocking Voltage
- All electrical parameters 100% tested
- Custom electrical selections available

APPLICATIONS
- CRTs
- Power Triac Driver
- Motors
- Consumer appliances
- Printers

ABSOLUTE MAXIMUM RATINGS
(25°C unless otherwise noted)
- Storage Temperature \(-55°C\)\(\pm 150°C\)
- Operating Temperature \(-40°C\)\(\pm 100°C\)
- Lead Soldering Temperature \(260°C\)

 (1.6mm from case for 10 seconds)

INPUT DIODE
- Forward Current \(50\text{mA}\)
- Reverse Voltage \(6\text{V}\)
- Power Dissipation \(70\text{mW}\)

 (derate linearly 0.93mW/°C above 25°C)

OUTPUT PHOTO TRIAC
- Off-State Output Terminal Voltage \(400\text{V}\)
- Forward Current (Peak) \(1\text{A}\)
- Power Dissipation \(300\text{mW}\)

 (derate linearly 4.0mW/°C above 25°C)

POWER DISSIPATION
- Total Power Dissipation \(330\text{mW}\)

 (derate linearly 4.4mW/°C above 25°C)
ELECTRICAL CHARACTERISTICS (\(T_a = 25^\circ C \) Unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
<th>TEST CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward Voltage ((V_F))</td>
<td>1.2</td>
<td>1.5</td>
<td>V</td>
<td></td>
<td>(I_F = 10mA) (V_R = 6V)</td>
</tr>
<tr>
<td>Reverse Current ((I_R))</td>
<td>100</td>
<td></td>
<td>μA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Off-state Current ((I_{DRM}))</td>
<td>100</td>
<td></td>
<td>nA</td>
<td></td>
<td>(V_{DRM} = 400V) (I_{DRM} = 100nA)</td>
</tr>
<tr>
<td>Peak Blocking Voltage ((V_{DRM}))</td>
<td>400</td>
<td></td>
<td>3.0</td>
<td>V</td>
<td>(I_{TM} = 100mA) (peak)</td>
</tr>
<tr>
<td>On-state Voltage ((V_{TM}))</td>
<td>1.5</td>
<td></td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Critical rate of rise of off-state Voltage ((dv/dt)) (note 1)</td>
<td>10</td>
<td></td>
<td>V/μs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Critical rate of rise of commutating Voltage ((dv/dt)) (note 1)</td>
<td>0.1</td>
<td>0.2</td>
<td>V/μs</td>
<td></td>
<td>(I_{load} = 15mA, \ V_{IN} = 30V) (fig 1.)</td>
</tr>
<tr>
<td>Coupled</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Current to Trigger ((I_{FT})) (note 2)</td>
<td>30</td>
<td></td>
<td>mA</td>
<td></td>
<td>(V_O = 3V) (note 2)</td>
</tr>
<tr>
<td>MOC3020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOC3021</td>
<td>15</td>
<td></td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOC3022</td>
<td>10</td>
<td></td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOC3023</td>
<td>5</td>
<td></td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holding Current, either direction ((I_H))</td>
<td>100</td>
<td></td>
<td>μA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input to Output Isolation Voltage (V_{ISO})</td>
<td>5300</td>
<td></td>
<td>V_{rms}</td>
<td>See note 3</td>
<td></td>
</tr>
<tr>
<td>7500</td>
<td></td>
<td></td>
<td>V_{pk}</td>
<td>See note 3</td>
<td></td>
</tr>
</tbody>
</table>

Note 1. Test voltage must be applied within \(dv/dt \) rating.
Note 2. Guaranteed to trigger at an \(I_F \) value less than or equal to max. \(I_{FT} \), recommended \(I_F \) lies between Rated \(I_{FT} \) and absolute max. \(I_{FT} \).
Note 3. Measured with input leads shorted together and output leads shorted together.

FIGURE 1

![FIGURE 1](image-url)