DESCRIPTION

The ISP06, ISP25, ISP40 and ISP60 are Single Channel Solid State Relays (Photo MOSFET) each consists of an infrared emitting diode optically coupled to a high voltage output detector. The detector consists of a Photo Voltaic Diode Array and high voltage output MOSFETs.

ISOCOM

COMPONENTS

This Single Channel Output configuration is equivalent to 1 Form A of Electro-mechanical Relay.

FEATURES

- Normally Open Single Pole Single Throw Relay
- High Output Voltages 60V to 600V •
- Low ON Resistance
- Low Operating Current
- High AC Isolation Voltage 5000V_{RMS}
- Wide Operating Temperature Range
- -40°C to 85°C
- Pb Free and RoHS Compliant
- Safety Approvals Pending

APPLICATIONS

- **Industrial Controls** .
- Telephone/Exchange Equipment
- Measurement Equipment
- FA/OA Equipment .
- Security System
- **Reed Relay Replacement**

ORDER INFORMATION

- Add G after PN for 10mm lead spacing
- Add SM after PN for Surface Mount. •
- Add SMT&R after PN for Surface Mount Tape & Reel

ABSOLUTE MAXIMUM RATINGS ($T_A = 25^{\circ}C$)

4

Input Diode

11

	Reverse Voltage Forward Peak Current (f=100Hz, Duty Cycle = 0.1%)			50mA 5V 1A 75mW		
Output						
Output Breakdown Voltag V _L (V) Load Current I _I	ISP06 60 je	ISP25 250	ISP40 400	ISP60 600		
Continuous (mA) Pulse (A) (100ms, 1 shot, $V_L = DC$) Power Dissipation	550 1.2	180 0.5	120 0.3 500m\	50 0.15 V		
Total Package				-		

Isolation Voltage 5000V_{RMS} (R.H. = 40% - 60%, 1 min) **Total Power Dissipation Operating Temperature** Storage Temperature Lead Soldering Temperature (10s)

550mW

-40 to 85 °C -40 to 125 °C 260°C

ISOCOM COMPONENTS 2004 LTD

Unit 25B, Park View Road West, Park View Industrial Estate Hartlepool, Cleveland, TS25 1UD, United Kingdom Tel: +44 (0)1429 863 609 Fax : +44 (0)1429 863 581 e-mail: sales@isocom.co.uk http://www.isocom.com

ISOCOM COMPONENTS ASIA LTD Hong Kong Office, Block A, 8/F, Wah Hing Industrial mansion, 36 Tai Yau Street, San Po Kong, Kowloon, Hong Kong. Tel: +852 2995 9217 Fax : +852 8161 6292 e-mail sales@isocom.com.hk

Truth Table

Input	Output
ON	CLOSE
OFF	OPEN

COMPONENTS

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise specified)

INPUT

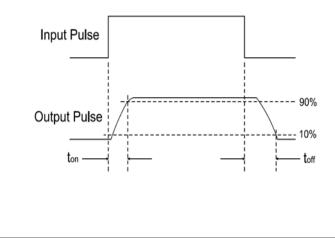
Parameter	Symbol	Test Condition	Min	Тур.	Мах	Unit
Forward Voltage	\mathbf{V}_{F}	$I_F = 10 \text{mA}$		1.18	1.5	V
Reverse Current	I _R	$V_R = 5V$			1	μΑ

OUTPUT

Parameter	Symbol	Test Condition	Min	Тур.	Max	Unit
Off State Leakage Current	I _{leak}	$I_F = 0mA, V_L = Max$			1	μΑ
On Resistance	$R_{d(ON)}$	$I_F = 10mA$, $I_L = Max$, $t = 1s$				Ω
		ISP06		0.7	2.5	
		ISP25		6.5	15	
		ISP40		20	30	
		ISP60		40	70	
Output Capacitance	C _{out}	$V_{L} = 0V, f = 1MHz$				pF
		ISP06		85		
		ISP25		60		
		ISP40		45		
		ISP60		30		

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise specified)

COUPLED


ISOCOM

COMPONENTS

Parameter	Symbol	Test Condition	Min	Тур.	Max	Unit
LED Turn On Current	$I_{F(\text{on})}$	$I_L = Max$		2.5	5	mA
LED Turn Off Current	$I_{F(\text{off})}$	$I_L = Max$	0.4	2.5		mA
Turn On Time	T _{on}	$I_F = 10 \text{mA}, I_L = \text{Max}, R_L = 200\Omega$				ms
		ISP06		1.4	3	
		ISP25		1.2	3	
		ISP40		0.4	3	
		ISP60		1.4	3	
Turn Off Time	T_{off}	$I_F = 10 \text{mA}, I_L = \text{Max}, R_L = 200\Omega$				ms
		ISP06		0.05	0.5	
		ISP25		0.05	0.5	
		ISP40		0.05	0.5	
		ISP60		0.05	0.5	
Isolation Resistance	R _{I-O}	V _{I-0} = 500VDC	5 x 10 ¹⁰			Ω
Isolation Capacitance	C _{I-O}	V = 0V, f = 1MHz		1.5		pF

Turn on / Turn off Time

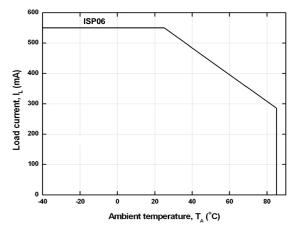


Fig 1a Load Current vs Ambient Temperature

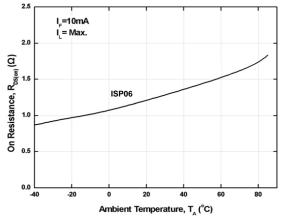
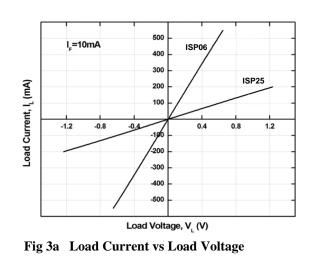



Fig 2a On Resistance vs Ambient Temperature

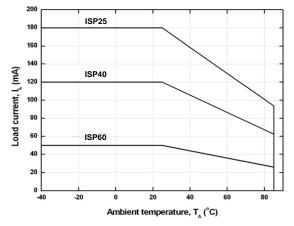


Fig 1b Load Current vs Ambient Temperature

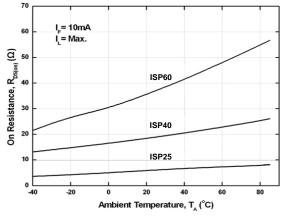


Fig 2b On Resistance vs Ambient Temperature

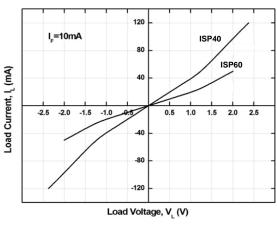
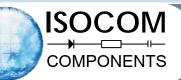



Fig 3b Load Current vs Load Voltage

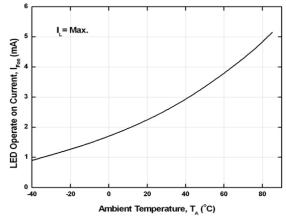


Fig 4 LED Turn On Current vs T_A

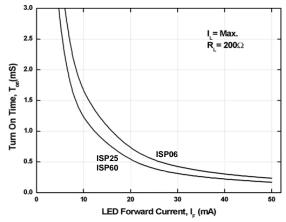
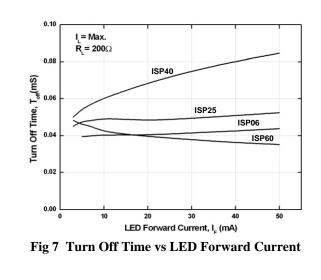



Fig 6a Turn On Time vs LED Forward Current

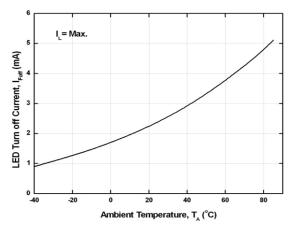


Fig 5 LED Turn Off Current vs T_A

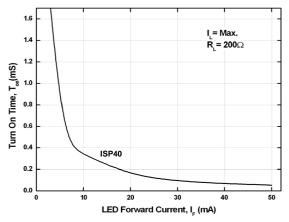


Fig 6b Turn On Time vs LED Forward Current

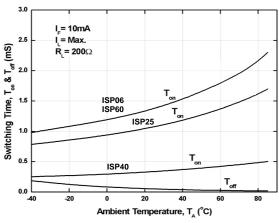


Fig 8 Switching Time vs Ambient Temperature

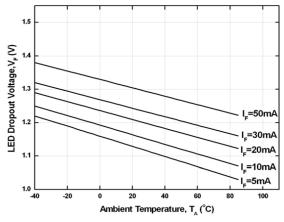


Fig 9 LED Dropout Voltage vs T_A

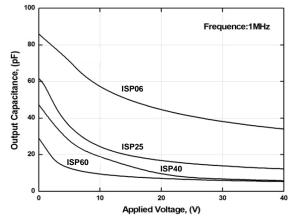
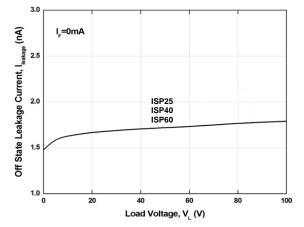
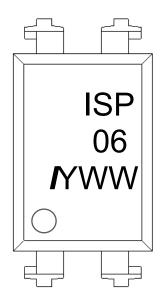
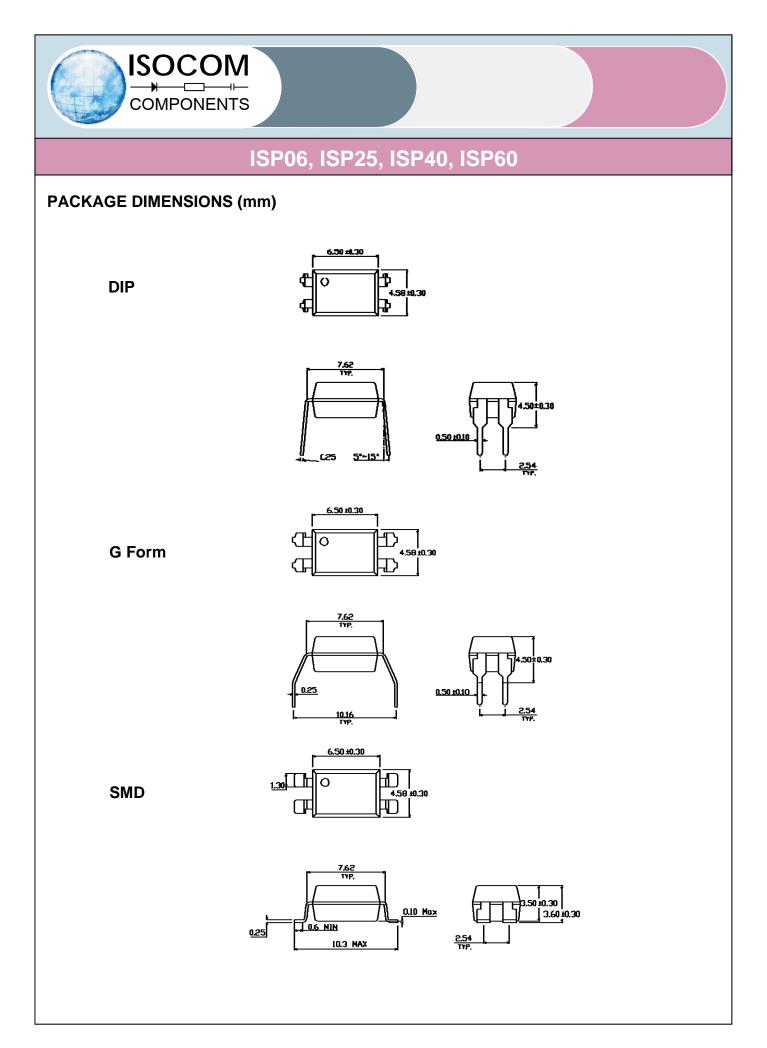
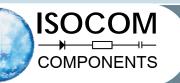


Fig 11 Output Capacitance vs Applied Voltage

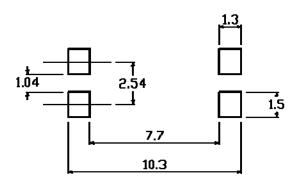



Fig 10 Off State Leakage Current vs Load Voltage

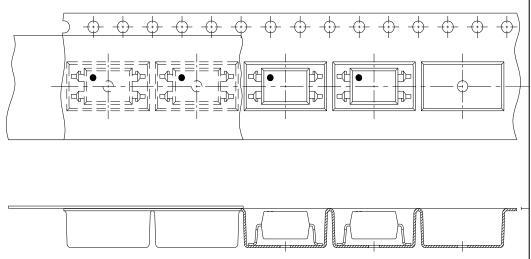

ORDER INFORMATION


ISP06, ISP25, ISP40, ISP60				
After PN	PN	Description	Packing quantity	
None	ISP06, ISP25, ISP40, ISP60	Standard DIP4	100 pcs per tube	
G	ISP06G, ISP25G, ISP40G, ISP60G	10mm Lead Spacing	100 pcs per tube	
SM	ISP06SM, ISP25SM, ISP40SM, ISP60SM	Surface Mount	100 pcs per tube	
SMT&R	ISP06SMT&R, ISP25SMT&R, ISP40SMT&R, ISP60SMT&R	Surface Mount Tape & Reel	1000 pcs per reel	

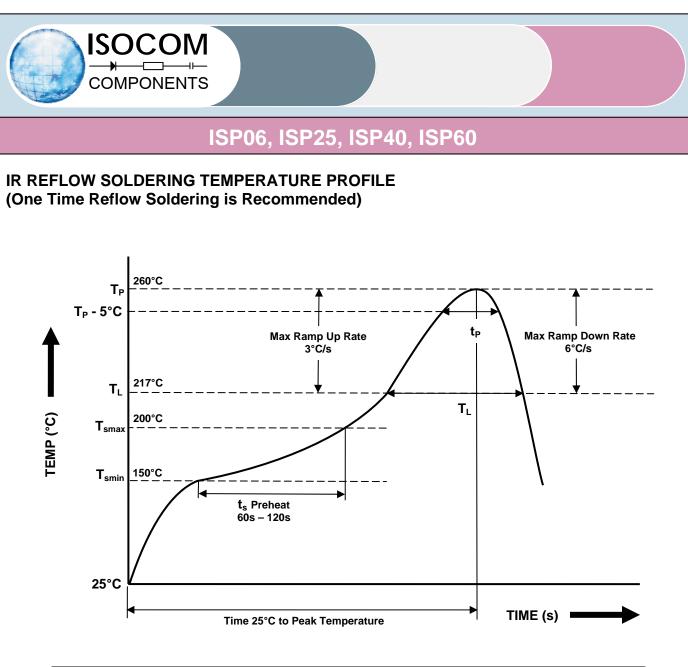
DEVICE MARKING



ISP06denotes Device Part Number (ISP06 is used as example)Idenotes IsocomYdenotes 1 digit Year codeWWdenotes 2 digit Week code



RECOMMENDED PAD LAYOUT FOR SMD (mm)



TAPE AND REEL PACKAGING

Direction of feed from reel

Dimension No.	Α	В	Do	D1	E	F
Dimension (mm)	10.4±0.1	4.55±0.1	1.5±0.1	1.5±0.05	1.75±0.1	7.5±0.1
Dimension No.	Ро	P1	P2	t	w	к

Profile Details	Conditions
Preheat - Min Temperature (T _{SMIN}) - Max Temperature (T _{SMAX}) - Time T _{SMIN} to T _{SMAX} (t _s)	150°C 200°C 60s - 120s
$\label{eq:soldering Zone} \begin{array}{l} \mbox{-} \mbox{Peak Temperature} (T_{P}) \\ \mbox{-} \mbox{Liquidous Temperature} (T_{L}) \\ \mbox{-} \mbox{Time within 5°C of Actual Peak Temperature} (T_{P}-5°C) \\ \mbox{-} \mbox{Time maintained above} T_{L} (t_{L}) \\ \mbox{-} \mbox{Ramp Up Rate} (T_{L} \mbox{ to } T_{P}) \\ \mbox{-} \mbox{Ramp Down Rate} (T_{P} \mbox{ to } T_{L}) \end{array}$	260°C 217°C 30s 60s - 100s 3°C/s max 6°C/s max
Average Ramp Up Rate (T_{smax} to T_P)	3°C/s max
Time 25°C to Peak Temperature	8 minutes max

NOTES :

- Isocom is continually improving the quality, reliability, function or design and Isocom reserves the right to make changes without further notices.
- The products shown in this publication are designed for the general use in electronic applications such as office automation equipment, communications devices, audio/visual equipment, electrical application and instrumentation.
- For equipment/application where high reliability or safety is required, such as space applications, nuclear power control equipment, medical equipment, etc., please contact our sales representatives.

- When requiring a device for any "specific" application, please contact our sales for advice.

- The contents described herein are subject to change without prior notice.
- Do not immerse device body in solder paste.

ISOCOM

COMPONENTS

DISCLAIMER

ISOCOM

COMPONENTS

ISOCOM is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing ISOCOM products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such ISOCOM products could cause loss of human life, bodily injury or damage to property.

In developing your designs, please ensure that ISOCOM products are used within specified operating ranges as set forth in the most recent ISOCOM products specifications.

____ The ISOCOM products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These ISOCOM products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation Instruments, traffic signal instruments, combustion control instruments, medical Instruments, all types of safety devices, etc... Unintended Usage of ISOCOM products listed in this document shall be made at the customer's own risk.

____ Gallium arsenide (GaAs) is a substance used in the products described in this document. GaAs dust and fumes are toxic. Do not break, cut or pulverize the product, or use chemicals to dissolve them. When disposing of the products, follow the appropriate regulations. Do not dispose of the products with other industrial waste or with domestic garbage.

____ The products described in this document are subject to the foreign exchange and foreign trade laws.

_____The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by ISOCOM Components for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of ISOCOM Components or others.

_ The information contained herein is subject to change without notice.