DESCRIPTION

The IS181 series of optocoupler consists of an infrared light emitting diode optically coupled to an NPN silicon photo transistor in a space efficient Mini Flat Package.

FEATURES

- Low Profile Package
- AC Isolation Voltage 3750V_{RMS}
- CTR Selections Available
- Wide Operating Temperature Range -55°C to +110°C
- Lead Free and RoHS Compliant
- UL File E91231 model “FPT1” and “FPT2”

APPLICATIONS

- Computer Terminals
- Industrial System Controllers
- Measuring Instruments
- Signal Transmission between Systems of Different Potentials and Impedance

ORDER INFORMATION

- Available in Tape and Reel with 3000 pieces per reel

ABSOLUTE MAXIMUM RATINGS (T_{A} = 25°C)

Stresses exceeding the absolute maximum ratings can cause permanent damage to the device. Exposure to absolute maximum ratings for long periods of time can adversely affect reliability.

Input

- Forward Current 50mA
- Reverse Voltage 6V
- Power dissipation 70mW

Output

- Collector to Emitter Voltage BV_{CEO} 80V
- Emitter to Collector Voltage BV_{ECC} 6V
- Collector Current 50mA
- Power Dissipation 150mW

Total Package

- Isolation Voltage 3750V_{RMS}
- Total Power Dissipation 170mW
- Operating Temperature -55 to 110 °C
- Storage Temperature -55 to 150 °C
- Lead Soldering Temperature (10s) 260°C
ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise specified)

INPUT

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Condition</th>
<th>Min</th>
<th>Typ.</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward Voltage</td>
<td>V_F</td>
<td>I_F = 20mA</td>
<td>1.2</td>
<td></td>
<td>1.4</td>
<td>V</td>
</tr>
<tr>
<td>Reverse Current</td>
<td>I_R</td>
<td>V_R = 4V</td>
<td></td>
<td></td>
<td>10</td>
<td>µA</td>
</tr>
<tr>
<td>Terminal Capacitance</td>
<td>C_t</td>
<td>V = 0V, f = 1KHz</td>
<td>30</td>
<td></td>
<td>250</td>
<td>pF</td>
</tr>
</tbody>
</table>

OUTPUT

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Condition</th>
<th>Min</th>
<th>Typ.</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-Emitter Breakdown Voltage</td>
<td>BVCEO</td>
<td>I_C = 0.1mA, I_F = 0 mA</td>
<td>80</td>
<td></td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>Emitter-Collector Breakdown Voltage</td>
<td>BVECO</td>
<td>I_E = 10µA, I_F = 0mA</td>
<td>6</td>
<td></td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>Collector-Emitter Dark Current</td>
<td>ICEO</td>
<td>V_CE = 20V, I_F = 0mA</td>
<td>100</td>
<td></td>
<td>600</td>
<td>nA</td>
</tr>
</tbody>
</table>

COUPLED

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Condition</th>
<th>Min</th>
<th>Typ.</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Transfer Ratio</td>
<td>CTR</td>
<td>I_F = 5mA, V_CE = 5V</td>
<td>50</td>
<td></td>
<td>600</td>
<td>%</td>
</tr>
<tr>
<td>Optional CTR Grades</td>
<td></td>
<td>IS181A</td>
<td>80</td>
<td></td>
<td>160</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IS181B</td>
<td>130</td>
<td></td>
<td>260</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IS181C</td>
<td>200</td>
<td></td>
<td>400</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IS181D</td>
<td>300</td>
<td></td>
<td>600</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IS181GR</td>
<td>100</td>
<td></td>
<td>300</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IS181GB</td>
<td>100</td>
<td></td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>Collector-Emitter Saturation Voltage</td>
<td>V_CE(sat)</td>
<td>I_F = 20mA, I_C = 1mA</td>
<td>0.2</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Floating Capacitance</td>
<td>C_f</td>
<td>V = 0V, f = 1MHz</td>
<td>0.6</td>
<td></td>
<td>1</td>
<td>pF</td>
</tr>
<tr>
<td>Output Rise Time</td>
<td>t_r</td>
<td>V_CE = 2V, I_c = 2mA, R_L = 100Ω</td>
<td>4</td>
<td></td>
<td>18</td>
<td>µs</td>
</tr>
<tr>
<td>Output Fall Time</td>
<td>t_f</td>
<td>V_CE = 2V, I_c = 2mA, R_L = 100Ω</td>
<td>3</td>
<td></td>
<td>18</td>
<td>µs</td>
</tr>
</tbody>
</table>

ISOLATION

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Condition</th>
<th>Min</th>
<th>Typ.</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulation Voltage</td>
<td>V_ISO</td>
<td>RH = 40% to 60%, t = 1 min,</td>
<td>3750</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Input - Output Resistance</td>
<td>R_L-O</td>
<td>V_L-O = 500VDC</td>
<td>5×10^10</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
</tbody>
</table>
Fig 1 Forward Current vs T_A

Fig 2 Collector Power Dissipation vs T_A

Fig 3 Forward Current vs Forward Voltage

Fig 4 Collector Current vs Collector-Emitter Voltage

Fig 5 Collector-Emitter Saturation Voltage vs Forward Current

Fig 6 Collector-Emitter Saturation Voltage vs T_A
Fig 7 Normalized Current Transfer Ratio vs Forward Current

Fig 8 Normalized Current Transfer Ratio vs T_A

Fig 9 Collector Dark Current vs T_A

Fig 10 Frequency response

Fig 11 Response Time vs Load Resistance
ORDER INFORMATION

<table>
<thead>
<tr>
<th>After PN</th>
<th>PN</th>
<th>Description</th>
<th>Packing quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>IS181</td>
<td>Surface Mount Tape & Reel</td>
<td>3000 pcs per reel</td>
</tr>
<tr>
<td>Any CTR Grade</td>
<td>IS181A, IS181B, IS181C, IS181D, IS181GR, IS181GB</td>
<td>Surface Mount Tape & Reel</td>
<td>3000 pcs per reel</td>
</tr>
</tbody>
</table>

NOTE: Multiple Grades may be supplied to meet the requested specification.

DEVICE MARKING

FPT# denotes Device Part Number where “#” is internal control number which can be “1” or “2”

I denotes Isocom

Y denotes 1 digit Year code

WW denotes 2 digit Week code

R denotes CTR Grade
PACKAGE DIMENSIONS (mm)

RECOMMENDED SOLDER PAD LAYOUT (mm)
TAPE AND REEL PACKAGING

<table>
<thead>
<tr>
<th>Description</th>
<th>Symbol</th>
<th>Dimension (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tape Width</td>
<td>W</td>
<td>12 ± 0.3 (0.47)</td>
</tr>
<tr>
<td>Pitch of Sprocket Holes</td>
<td>P₀</td>
<td>4 ± 0.1 (0.15)</td>
</tr>
<tr>
<td>Distance of Compartment to Sprocket Holes</td>
<td>F</td>
<td>5.5 ± 0.1 (0.217)</td>
</tr>
<tr>
<td></td>
<td>P₂</td>
<td>2 ± 0.1 (0.079)</td>
</tr>
<tr>
<td>Distance of Compartment to Compartment</td>
<td>P₁</td>
<td>8 ± 0.1 (0.315)</td>
</tr>
</tbody>
</table>
IR REFLOW SOLDERING TEMPERATURE PROFILE
One Time Reflow Soldering is Recommended.
Do not immerse device body in solder paste.

![Temperature Profile Diagram]

Profile Details	**Conditions**
Preheat
- Min Temperature (T_{SMIN})
- Max Temperature (T_{MAX})
- Time T_{SMIN} to T_{MAX} (t_s) |
150°C
180°C
60s - 120s

Soldering Zone
- Peak Temperature (T_P)
- Liquidous Temperature (T_L)
- Time within 5°C of Actual Peak Temperature ($T_P - 5°C$)
- Time maintained above T_L (t_L)
- Ramp Up Rate (T_L to T_P)
- Ramp Down Rate (T_P to T_L) |
260°C
217°C
20s
60s
3°C/s max
3 - 6°C/s

Average Ramp Up Rate (T_{SMAX} to T_P)
Time 25°C to Peak Temperature |
3°C/s max
8 minutes max
Isocom Components is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing Isocom Components products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such Isocom Components products could cause loss of human life, bodily injury or damage to property.

In developing your designs, please ensure that Isocom Components products are used within specified operating ranges as set forth in the most recent Isocom Components products specifications.

The Isocom Components products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These Isocom Components products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation Instruments, traffic signal instruments, combustion control instruments, medical Instruments, all types of safety devices, etc... Unintended Usage of Isocom Components products listed in this document shall be made at the customer's own risk.

Gallium arsenide (GaAs) is a substance used in the products described in this document. GaAs dust and fumes are toxic. Do not break, cut or pulverize the product, or use chemicals to dissolve them. When disposing of the products, follow the appropriate regulations. Do not dispose of the products with other industrial waste or with domestic garbage.

The products described in this document are subject to the foreign exchange and foreign trade laws.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by Isocom Components for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of Isocom Components or others.

The information contained herein is subject to change without notice.