

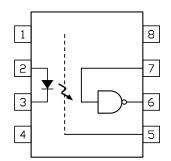
#### DESCRIPTION

The ICPLW2601 and ICPLW2611 devices each consists of an infrared emitting diode optically coupled to a high speed integrated photo detector logic gate with a strobable output.

These devices belong to Isocom wide body package range optocouplers.

#### **FEATURES**

- High Speed 10Mbit/s
- Wide Body Package
- Guaranteed Performance from -40°C to 85°C
- Strobable Logic Gate Output
- Minimum Common Mode Transient Immunity 10kV/µs at V<sub>CM</sub> 1000V (ICPLW2611)
- High AC Isolation Voltage 5000V<sub>RMS</sub>
- Pb Free and RoHS Compliant
- Safety Approvals Pending


#### **APPLICATIONS**

- Line Receivers, Data Communication
- LSTTL to TTL, LSTTL or 5V CMOS
- Data Multiplexing
- Pulse Transformer Replacement
- Switch Mode Power Supplies
- Ground Loop Elimination
- Computer Peripheral Interface

#### ORDER INFORMATION

- Add SM after PN for Surface Mount
- Add SMT&R after PN for Surface Mount Tape & Reel





- l NC
- 2 Anode
- 3 Cathode
- 4 NC
- 5 GND
- 6 V<sub>0</sub>
- $V_{\rm E}$
- $V_{CC}$

85mW

A 0.1µF bypass Capacitor must be connected between Pins 8 and 5.

#### ABSOLUTE MAXIMUM RATINGS $(T_A = 25^{\circ}C)$

Stresses exceeding the absolute maximum ratings can cause permanent damage to the device.

Exposure to absolute maximum ratings for long periods of time can adversely affect reliability.

#### Input

| Forward Current   | 50mA  |
|-------------------|-------|
| Reverse Voltage   | 5V    |
| Power dissipation | 100mW |

#### Output

| Output Current                         | 50mA |
|----------------------------------------|------|
| Output Voltage                         | 7.0V |
| Supply Voltage                         | 7.0V |
| Enable Input Voltage                   | 5.5V |
| (maximum 500mV above V <sub>CC</sub> ) |      |

Power Dissipation

**Total Package** 

(10s)

| Isolation Voltage          | $5000V_{\text{RMS}}$ |
|----------------------------|----------------------|
| Operating Temperature      | −40 to 85°C          |
| Junction Temperature       | 125°C                |
| Storage Temperature        | −55 to 125°C         |
| Lead Soldering Temperature | 260°C                |

#### **ISOCOM COMPONENTS 2004 LTD**

Unit 25B, Park View Road West, Park View Industrial Estate Hartlepool, Cleveland, TS25 1PE, United Kingdom Tel: +44 (0)1429 863 609 Fax: +44 (0)1429 863 581 e-mail: sales@isocom.co.uk http://www.isocom.com

#### **ISOCOM COMPONENTS ASIA LTD**

Hong Kong Office
Block A, 8/F, Wah Hing Industrial Mansions
36 Tai Yau Street, San Po Kong, Kowloon, Hong Kong
Tel: +852 2995 9217 Fax: +852 8161 6292
e-mail: sales@isocom.com.hk



### **Truth Table (Positive Logic)**

| Input | Enable | Output |
|-------|--------|--------|
| Н     | Н      | L      |
| L     | Н      | Н      |
| Н     | L      | Н      |
| L     | L      | Н      |
| Н     | NC     | L      |
| L     | NC     | Н      |



### ELECTRICAL CHARACTERISTICS ( $T_A = -40$ to 85°C unless otherwise specified)

#### **INPUT**

| Parameter                                  | Symbol                | Test Condition                         | Min     | Тур. | Max | Unit  |
|--------------------------------------------|-----------------------|----------------------------------------|---------|------|-----|-------|
| Forward Voltage                            | $V_{\mathrm{F}}$      | $I_F = 10 \text{mA}$                   |         | 1.4  | 1.8 | V     |
| Forward Voltage<br>Temperature Coefficient | $\Delta V_F/\Delta T$ | $I_F = 10 \text{mA}$                   | nA -1.9 |      |     | mV/°C |
| Reverse Voltage                            | $V_R$                 | $I_R = 100 \mu A, T_A = 25 ^{\circ} C$ | 5.0     |      |     | V     |
| Input Capacitance                          | $C_{IN}$              | $V_F = 0V, f = 1MHz$                   |         | 70   |     | pF    |

#### **OUTPUT**

| Parameter                    | Symbol            | Test Condition                                                      | Min | Тур. | Max  | Unit |
|------------------------------|-------------------|---------------------------------------------------------------------|-----|------|------|------|
| Low Level<br>Supply Current  | $I_{CCH}$         | $I_F = 0$ mA, $V_{CC} = 5.5$ V<br>$V_E = 0.5$ V                     |     | 6.5  | 10   | mA   |
| Low Level<br>Supply Current  | $I_{CCL}$         | $I_F = 10 \text{mA}, V_{CC} = 5.5 \text{V}$<br>$V_E = 0.5 \text{V}$ |     | 8    | 13   | mA   |
| High Level<br>Enable Current | $I_{EH}$          | $V_{CC} = 5.5V, V_E = 2.0V$                                         |     | -0.6 | -1.6 | mA   |
| Low Level<br>Enable Current  | $I_{EL}$          | $V_{CC} = 5.5V, V_E = 0.5V$                                         |     | -0.8 | -1.6 | mA   |
| High Level<br>Enable Voltage | $V_{\mathrm{EH}}$ | $I_F = 10 \text{mA}, \ V_{CC} = 5.5 \text{V}$                       | 2.0 |      |      | V    |
| Low Level<br>Enable Voltage  | $ m V_{EL}$       | $I_F = 10 \text{mA}, V_{CC} = 5.5 \text{V}$                         |     |      | 0.8  | V    |

#### **COUPLED**

| Parameter                    | Symbol            | Test Condition                                             | Min | Тур. | Max | Unit |
|------------------------------|-------------------|------------------------------------------------------------|-----|------|-----|------|
| High Level<br>Output Current | $I_{\mathrm{OH}}$ | $I_F = 250 \mu A, \ V_E = 2.0 V \\ V_{CC} = V_O = 5.5 V$   |     | 2.1  | 100 | μΑ   |
| Low Level<br>Output Voltage  | $V_{OL}$          | $I_F = 5mA, V_E = 2.0V$<br>$V_{CC} = 5.5V, I_{OL} = 13mA$  |     | 0.35 | 0.6 | V    |
| Input Threshold Current      | $I_{FT}$          | $V_{CC} = 5.5V, V_E = 2.0V$<br>$V_O = 0.6V, I_{OL} = 13mA$ |     | 3.0  | 5   | mA   |



## ELECTRICAL CHARACTERISTICS ( $T_A$ = -40 to 85°C, $V_{CC}$ = 5V, $I_F$ = 7.5mA unless otherwise specified)

#### **SWITCHING**

| Parameter                                                | Symbol                  | Test Condition                                                                     | Min | Тур. | Max | Unit |
|----------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------|-----|------|-----|------|
| Propagation Delay Time<br>to High Output Level           | $t_{ m PHL}$            | $R_L = 350\Omega$ $C_L = 15pF$                                                     |     | 35   | 100 | ns   |
| Propagation Delay Time to Low Output Level               | $t_{\rm PLH}$           | $T_A = 25^{\circ}C$                                                                |     | 40   | 100 |      |
| Pulse Width Distortion                                   | $ t_{PHL}$ - $t_{PLH} $ | $R_L = 350\Omega$ $C_L = 15pF$                                                     |     | 5    | 40  |      |
| Output Rise Time (10% to 90%)                            | $t_{\rm r}$             |                                                                                    |     | 40   |     |      |
| Output Fall Time (90% to 10%)                            | ${ m t_f}$              |                                                                                    |     | 10   |     |      |
| Enable Propagation<br>Delay Time to<br>High Output Level | t <sub>ELH</sub>        | $\begin{aligned} V_{EH} &= 3.0V \\ R_L &= 350\Omega \\ C_L &= 15 pF \end{aligned}$ |     | 15   |     |      |
| Enable Propagation<br>Delay Time to<br>Low Output Level  | t <sub>EHL</sub>        |                                                                                    |     | 15   |     |      |



## ELECTRICAL CHARACTERISTICS (T<sub>A</sub> = -40 to 85°C, V<sub>CC</sub> = 5V, I<sub>F</sub> = 7.5mA unless otherwise specified)

#### **SWITCHING**

| Parameter                                         | Symbol | Test Condition                                                                                                                                                  | Min | Тур. | Max | Unit  |
|---------------------------------------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|-----|-------|
| Common Mode Transient Immunity at Logic High      |        | $\begin{split} ICPLW2601 \\ I_F = 0mA, V_{OH} = 2.0V \\ R_L = 350\Omega \\ V_{CM} = 50Vp\text{-}p \\ T_A = 25^{\circ}C \end{split}$                             | 5   |      |     | kV/μs |
|                                                   |        | $ICPLW2611$ $I_F = 0mA, V_{OH} = 2.0V$ $R_L = 350\Omega$ $V_{CM} = 400Vp-p$ $T_A = 25^{\circ}C$                                                                 | 10  |      |     |       |
|                                                   |        | $\begin{split} & ICPLW2611 \\ & I_F = 0 mA,  V_{OH} = 2.0 V \\ & V_E = V_{CC} \\ & R_L = 350 \Omega \\ & V_{CM} = 400 Vp-p \\ & T_A = 25^{\circ} C \end{split}$ | 20  |      |     |       |
| Common Mode<br>Transient Immunity at<br>Logic Low | $CM_L$ | $\begin{split} ICPLW2601 \\ I_F = 7.5 mA,  V_{OL} = 0.8 V \\ R_L = 350 \Omega \\ V_{CM} = 50 V p - p \\ T_A = 25 ^{\circ} C \end{split}$                        | 5   |      |     | kV/μs |
|                                                   |        | $ICPLW2611 \\ I_F = 7.5 mA, \ V_{OL} = 0.8 V \\ R_L = 350 \Omega \\ V_{CM} = 400 V p - p \\ T_A = 25 ^{\circ} C$                                                | 10  |      |     |       |
|                                                   |        | $\begin{split} ICPLW2611 \\ I_F = 7.5 mA, \ V_{OL} = 0.8 V \\ V_E = V_{CC} \\ R_L = 350 \Omega \\ V_{CM} = 400 Vp-p \\ T_A = 25^{\circ} C \end{split}$          | 20  |      |     |       |

#### **ISOLATION**

| Parameter         | Symbol        | Test Condition                                         | Min  | Тур. | Max | Unit      |
|-------------------|---------------|--------------------------------------------------------|------|------|-----|-----------|
| Isolation Voltage | $V_{\rm ISO}$ | RH = $40-60\%$ , t = 1 min<br>T <sub>A</sub> = $25$ °C | 5000 |      |     | $V_{RMS}$ |

Device is considered a two terminal device: pins 1 to 4 are shorted together and pins 5 to 8 are shorted together.



#### **ELECTRICAL CHARACTERISTICS**

#### Notes:

- V<sub>CC</sub> supply must be bypassed by a 0.1μF capacitor or larger with good frequency characteristics and should be connected as close as possible to the package V<sub>CC</sub> and GND pins.
- Enable Input: No pull up resistor regired as the device has an internal pull up resistor.
- t<sub>PLH</sub>: measured from the 3.75mA level on the HIGH to LOW transition of the input current pulse to the
   1.5V level on the LOW to HIGH transition of the output voltage pulse.
- t<sub>PHL</sub>: measured from the 3.75mA level on the LOW to HIGH transition of the input current pulse to the
   1.5 V level on the HIGH to LOW transition of the output voltage pulse.
- t<sub>r</sub>: measured from the 10% to 90% level on the LOW to HIGH transition of the output voltage pulse.
- $t_{\rm f}$ : measured from the 90% to 10% level on the HIGH to LOW transition of the output voltage pulse.
- t<sub>ELH</sub>: measured from the 1.5V level on the HIGH to LOW transition of the input Enable voltage pulse to the
   1.5V level on the LOW to HIGH transition of the output voltage pulse.
- t<sub>EHL</sub>: measured from the 1.5V level on the LOW to HIGH transition of the input Enable voltage pulse to the
   1.5V level on the HIGH to LOW transition of the output voltage pulse.
- $CM_H$ : the maximum tolerable rate of rise of the Common Mode voltage to ensure the output will remain in the HIGH state (i.e.,  $V_O > 2.0V$ ).
- $CM_L$ : the maximum tolerable rate of rise of the Common Mode voltage to ensure the output will remain in the LOW state (i.e.,  $V_O < 0.8V$ ).



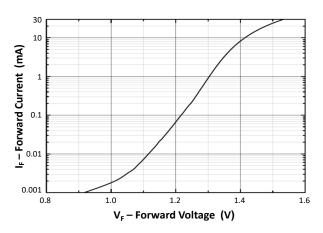



Fig 1 Forward Current vs Forward Voltage

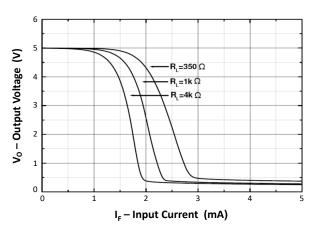



Fig 3 Output Voltage vs Input Current

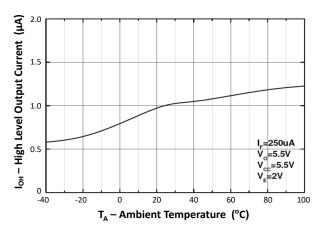



Fig 5 High Level Output Current vs Ambient Temperature

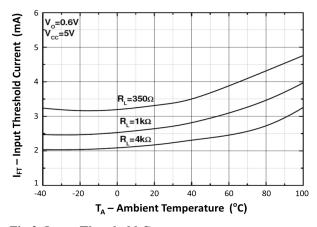



Fig 2 Input Threshold Current vs Ambient Temperature

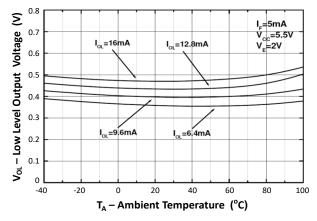



Fig 4 Low Level Output Voltage vs Ambient Temperature

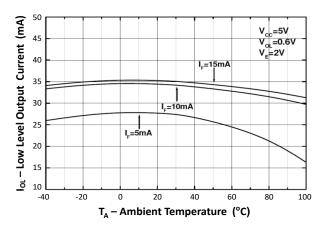



Fig 6 Low Level Output Current vs Ambient Temperature



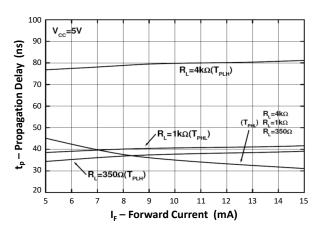



Fig 7 Propagation Delay vs Forward Current

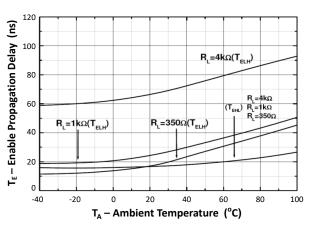



Fig 9 Enable Propagation Delay vs Ambient Temperature

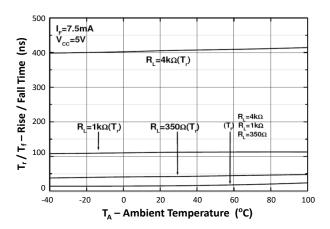



Fig 11 Rise Time / Fall Time vs Ambient Temperature

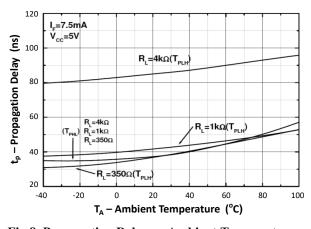
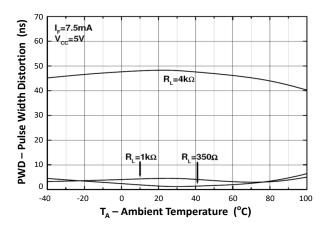
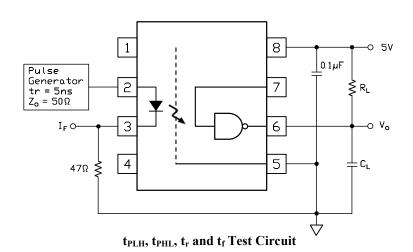
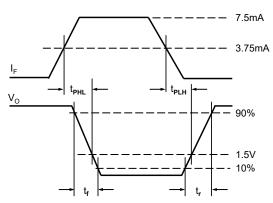
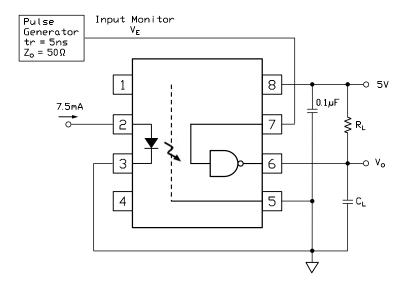
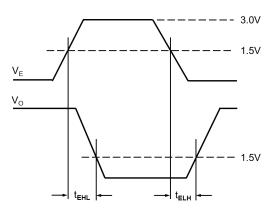


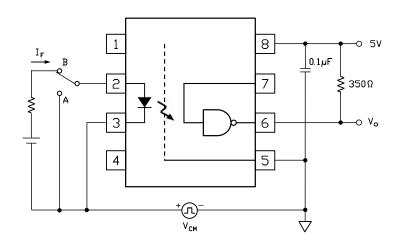

Fig 8 Propagation Delay vs Ambient Temperature

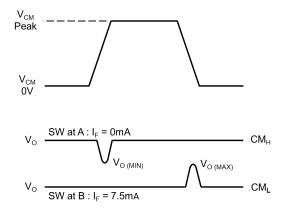







Fig 10 Pulse Width Distortion vs Ambient Temperature

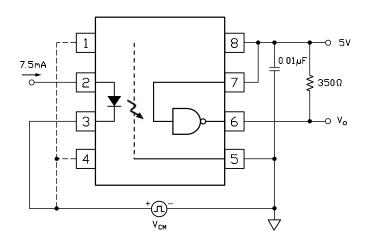










 $t_{ELH}$  and  $t_{EHL} \, Test \, Circuit$ 

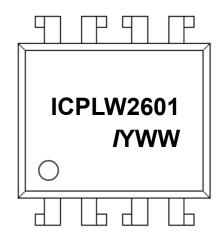






**Common Mode Transient Immunity Test Circuit** 




ICPLW2611: Recommended Drive Circuit for High Common Mode Transient Immunity



#### **ORDER INFORMATION**

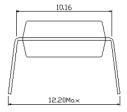
|          | ICPLW2601, ICPLW2611             |                           |                  |  |  |  |  |  |
|----------|----------------------------------|---------------------------|------------------|--|--|--|--|--|
| After PN | After PN PN Description Pack     |                           |                  |  |  |  |  |  |
| None     | ICPLW2601, ICPLW2611             | Wide Body DIP8            | 40 pcs per tube  |  |  |  |  |  |
| SM       | ICPLW2601SM, ICPLW2611SM         | Surface Mount             | 40 pcs per tube  |  |  |  |  |  |
| SMT&R    | ICPLW2601SMT&R<br>ICPLW2611SMT&R | Surface Mount Tape & Reel | 500 pcs per reel |  |  |  |  |  |

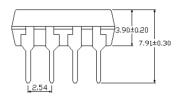
DEVICE MARKING Example : ICPLW2601



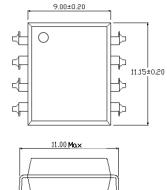
ICPLW2601 denotes Device Part Number

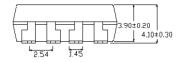

I denotes IsocomY denotes Year code


WW denotes 2 digit Week Code



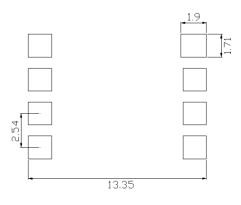

### **PACKAGE DIMENSIONS (mm)**


DIP



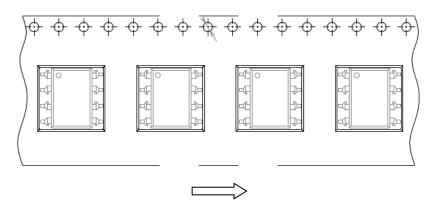




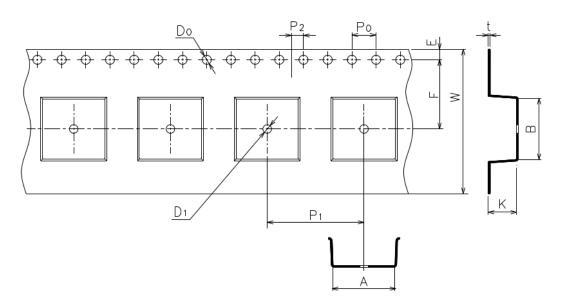


**SMD** 






#### **RECOMMENDED PAD LAYOUT FOR SMD (mm)**

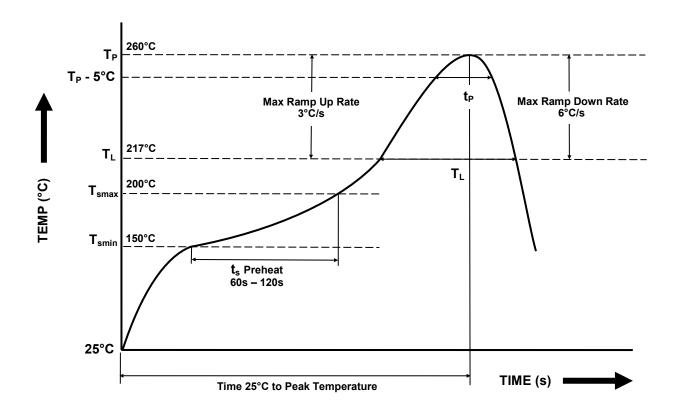
12.30±0.30






#### **TAPE AND REEL PACKAGING**




Direction of feed from reel



| Dimension | Α              | В              | D <sub>0</sub> | D <sub>1</sub> | E         | F        |
|-----------|----------------|----------------|----------------|----------------|-----------|----------|
| mm        | 12.7±0.1       | 11.45±0.1      | 1.5±0.1        | 1.5±0.1        | 1.75±0.1  | 11.5±0.1 |
| Dimension | P <sub>0</sub> | P <sub>1</sub> | P <sub>2</sub> | t              | W         | к        |
| mm        | 4.0±0.1        | 16.0±0.1       | 2.0±0.1        | 0.4±0.05       | 24.00±0.3 | 4.6±0.1  |



# IR REFLOW SOLDERING TEMPERATURE PROFILE One Time Reflow Soldering is Recommended. Do not immerse device body in solder paste.



| Profile Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Conditions                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| $ \begin{array}{l} \textbf{Preheat} \\ \textbf{- Min Temperature } (T_{SMIN}) \\ \textbf{- Max Temperature } (T_{SMAX}) \\ \textbf{- Time } T_{SMIN} \ \text{to } T_{SMAX} \left( t_s \right) \end{array} $                                                                                                                                                                                                                                                                                            | 150°C<br>200°C<br>60s - 120s                                                 |
| $\begin{tabular}{ll} \textbf{Soldering Zone} \\ - & \begin{tabular}{ll} \textbf{Peak Temperature } (T_P) \\ - & \begin{tabular}{ll} \textbf{Time at Peak Temperature } (T_L) \\ - & \begin{tabular}{ll} \textbf{Liquidous Temperature } (T_P - 5^{\circ}C) \\ - & \begin{tabular}{ll} \textbf{Time minimized above } T_L (t_L) \\ - & \begin{tabular}{ll} \textbf{Ramp Up Rate } (T_L \ to \ T_P) \\ - & \begin{tabular}{ll} \textbf{Ramp Down Rate } (T_P \ to \ T_L) \\ \end{tabular} \end{tabular}$ | 260°C<br>10s max<br>217°C<br>30s max<br>60s - 100s<br>3°C/s max<br>6°C/s max |
| Average Ramp Up Rate (T <sub>smax</sub> to T <sub>P</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3°C/s max                                                                    |
| Time 25°C to Peak Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8 minutes max                                                                |



#### **DISCLAIMER**

Isocom Components is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing Isocom Components products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such Isocom Components products could cause loss of human life, bodily injury or damage to property.

In developing your designs, please ensure that Isocom Components products are used within specified operating ranges as set forth in the most recent Isocom Components products specifications.

The Isocom Components products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These Isocom Components products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation Instruments, traffic signal instruments, combustion control instruments, medical Instruments, all types of safety devices, etc... Unintended Usage of Isocom Components products listed in this document shall be made at the customer's own risk.

Gallium arsenide (GaAs) is a substance used in the products described in this document. GaAs dust and fumes are toxic. Do not break, cut or pulverize the product, or use chemicals to dissolve them. When disposing of the products, follow the appropriate regulations. Do not dispose of the products with other industrial waste or with domestic garbage.

The products described in this document are subject to the foreign exchange and foreign trade laws.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by Isocom Components for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of Isocom Components or others.

The information contained herein is subject to change without notice.