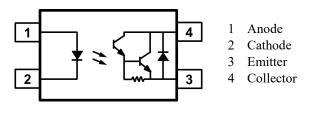


DESCRIPTION

The IS627 optically coupled isolators consists of an infrared light emitting diode and a high voltage NPN silicon photo darlington which has an integral base-emitter resistor to optimise switching speed and elevated temperature characteristics in a standard 4 pin Dual In Line Plastic Package.

FEATURES


- AC Isolation Voltage 5000V_{RMS}
- High Current Transfer Ratio 1000% minimum
- Wide Operating Temperature Range -30°C to +110°C
- Lead Free and RoHS Compliant
- UL File E91231 Package Code "FF"

APPLICATIONS

- Modems
- Fax and Copying Machines
- Numerical Controllers
- Signal Transmissions between Systems of Different Potentials and Impedances

ORDER INFORMATION

- Add G after PN for 10mm lead spacing
- Add SM after PN for Surface Mount
- Add SMT&R after PN for Surface Mount Tape & Reel

ABSOLUTE MAXIMUM RATINGS (T_A = 25°C)

Stresses exceeding the absolute maximum ratings can cause permanent damage to the device. Exposure to absolute maximum ratings for long periods of time can adversely affect reliability.

Input

Forward Current	50mA
Reverse Voltage	6V
Junction Temperature	125°C
Power dissipation	70mW

Output

Collector to Emitter Voltage V
Emitter to Collector Voltage V
ECO300VEmitter to Collector Voltage V
ECO0.1VCollector Current150mAJunction Temperature125°CPower Dissipation150mW

Total Package

Isolation Voltage	$5000V_{\text{RMS}}$
Total Power Dissipation	200mW
Operating Temperature	-30 to 110°C
Storage Temperature	-55 to 125°C
Lead Soldering Temperature (10s)	260°C

ISOCOM COMPONENTS 2004 LTD

Unit 25B, Park View Road West, Park View Industrial Estate Hartlepool, Cleveland, TS25 1PE, United Kingdom Tel : +44 (0)1429 863 609 Fax : +44 (0)1429 863 581 e-mail : sales@isocom.co.uk http://www.isocom.com

ISOCOM COMPONENTS ASIA LTD

Hong Kong Office Block A, 8/F, Wah Hing Industrial Mansions 36 Tai Yau Street, San Po Kong, Kowloon, Hong Kong Tel : +852 2995 9217 Fax : +852 8161 6292 e-mail : sales@isocom.com.hk

ELECTRICAL CHARACTERISTICS (Ambient Temperature = 25°C unless otherwise specified)

INPUT

ISOCOM COMPONENTS

Parameter	Symbol	Test Condition	Min	Тур.	Max	Unit
Forward Voltage	$V_{\rm F}$	$I_F = 20 m A$		1.2	1.4	V
Reverse Leakage	I _R	$V_R = 4V$			10	μΑ
Terminal Capacitance	Ct	V = 0V, f = 1KHz		30	250	pF

OUTPUT

Parameter	Symbol	Test Condition	Min	Тур.	Max	Unit
Collector–Emitter Breakdown Voltage	BV _{CEO}	$I_{\rm C} = 0.1 {\rm mA}, I_{\rm F} = 0 {\rm mA}$	300			V
Emitter-Collector Breakdown Voltage	BV _{ECO}	$I_E = 10 \mu A, I_F = 0 m A$	0.1			V
Collector–Emitter Dark Current	I _{CEO}	$V_{CE} = 200V, I_F = 0mA$			200	nA

COUPLED

Parameter	Symbol	Test Condition	Min	Тур.	Мах	Unit
Current Transfer Ratio	CTR	$I_F = 1 \text{mA}, V_{CE} = 2 \text{V}$	1000	4000	15000	%
Collector–Emitter Saturation Voltage	V _{CE(sat)}	$I_F = 20 \text{mA}, I_C = 100 \text{mA}$			1.2	V
Floating Capacitance	C _f	V = 0V, f = 1MHz		0.6	1	pF
Cut-Off Frequency	fc	$\label{eq:Vce} \begin{split} V_{CE} &= 2V, \ I_C = 20 mA \\ R_L &= 100 \Omega, \ -3 dB \end{split}$	1	7		kHz
Rise Time	t _r	$V_{CE} = 2V, I_C = 20mA$		100	300	μs
Fall Time	t _f	$R_L = 100\Omega$		20	100	

ISOLATION

Parameter	Symbol	Test Condition	Min	Тур.	Max	Unit
Input to Output Isolation Voltage	V _{ISO}	AC, RH = 40% to 60%, 1 min Note 1	5000			V _{RMS}
Input to Output Isolation Resistance	R _{ISO}	V_{IO} = 500V, RH = 40% to 60% Note 1	5x10 ¹⁰	1x10 ¹¹		Ω

Note 1 : Measure with input leads shorted together and output leads shorted together.

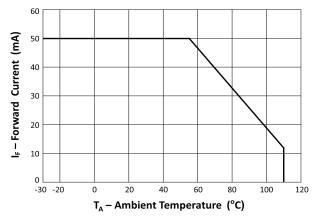


Fig 1 Forward Current vs Ambient Temperature

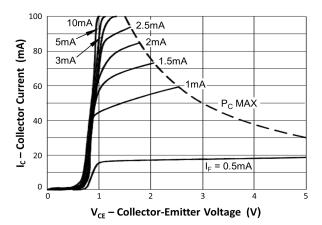
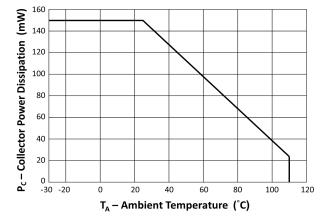
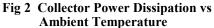




Fig 3 Collector Current vs Collector-Emitter Voltage

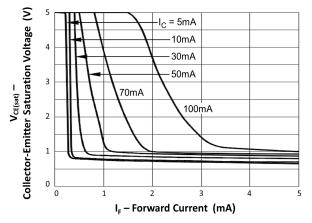


Fig 4 Collector-Emitter Saturation Voltage vs Forward Current

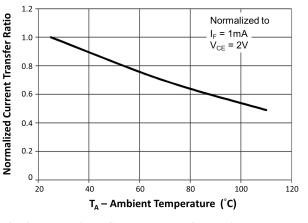
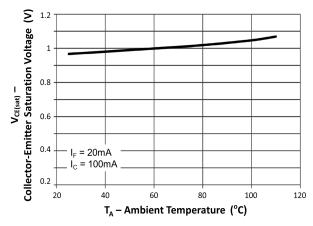
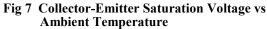




Fig 6 Normalized Current Transfer Ratio vs Ambient Temperature

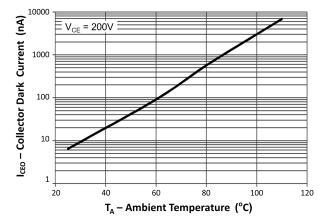
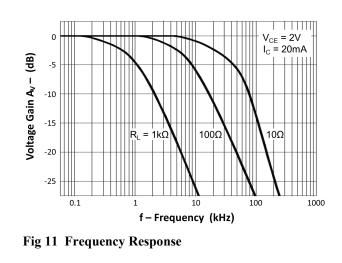
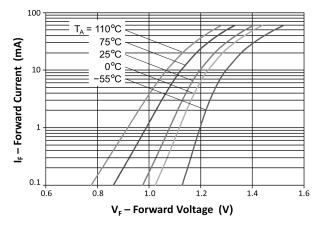
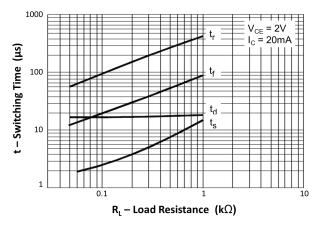
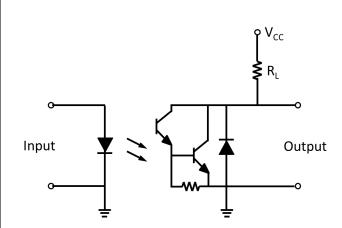
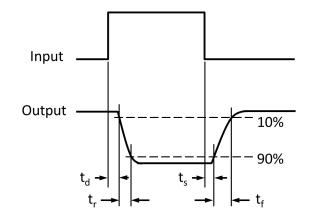
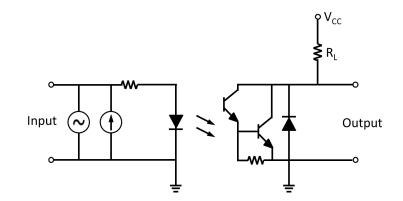




Fig 9 Collector Dark Current vs Ambient Temperature

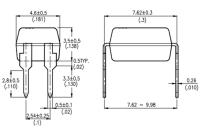

Fig 10 Response Time vs Load Resistance

Response Time Test Circuit and Waveform

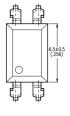
Frequency Response Test Circuit

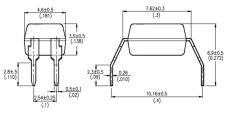
ORDER INFORMATION

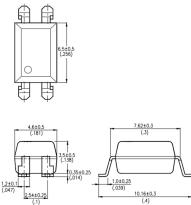
IS627 (UL Approval)					
After PN	PN	Description	Packing quantity		
None	IS627	Standard DIP4	100 pcs per tube		
G	IS627G	10mm Lead Spacing	100 pcs per tube		
SM	IS627SM	Surface Mount	100 pcs per tube		
SMT&R	IS627SMT&R	Surface Mount Tape & Reel	1000 pcs per reel		



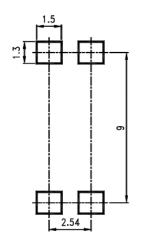
PACKAGE DIMENSIONS in mm (inch)

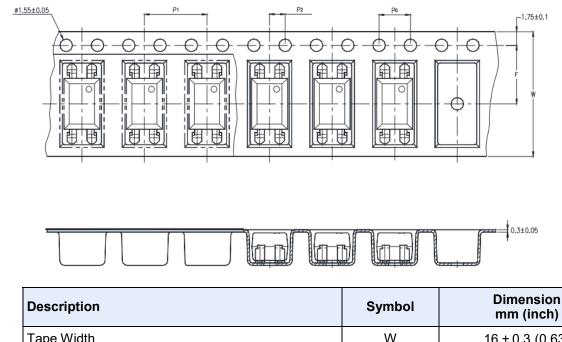

DIP

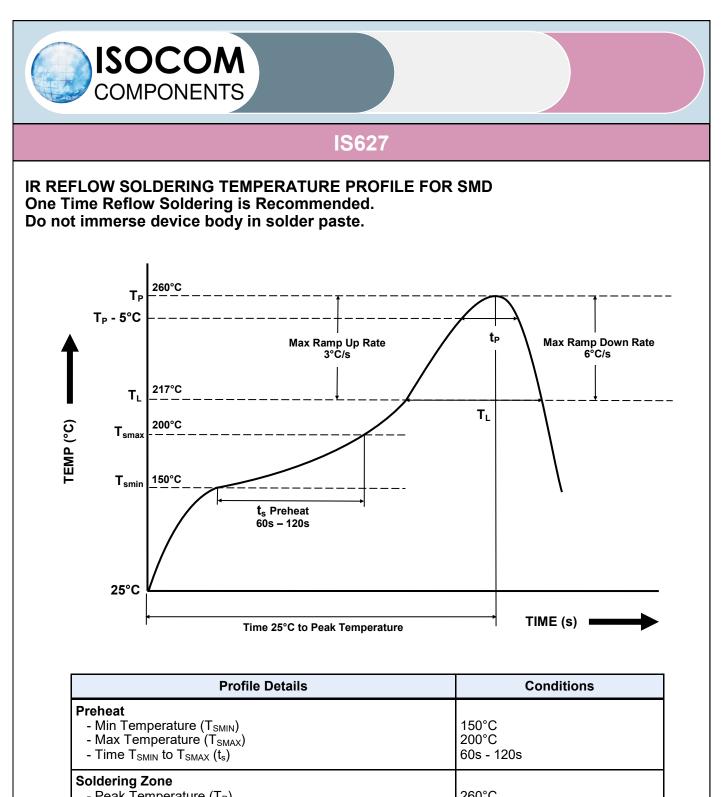

IS627



IS627G


IS627SM


0.26 (.010)


RECOMMENDED PAD LAYOUT FOR SMD (mm)

Description	Symbol	mm (inch)
Tape Width	W	16 ± 0.3 (0.63)
Pitch of Sprocket Holes	Po	4 ± 0.1 (0.15)
Distance of Compartment to Sprocket Holes	F	7.5 ± 0.1 (0.295)
Distance of Compartment to Sprocket holes	P ₂	2 ± 0.1 (0.079)
Distance of Compartment to Compartment	P ₁	8 ± 0.1 (0.315)

- Time at Peak Temperature	10
	10s max
- Liquidous Temperature (T _L)	217°C
- Time within 5°C of Actual Peak Temperature ($T_P = 5^{\circ}C$)	30s max
- Time maintained above $T_L(t_L)$	60s - 100s
- Ramp Up Rate (T _L to T _P)	3°C/s max
- Ramp Down Rate (T_P to T_L)	6°C/s max
Average Ramp Up Rate (T_{smax} to T_P)	3°C/s max
Time 25°C to Peak Temperature	8 minutes max

DISCLAIMER

Isocom Components is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing Isocom Components products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such Isocom Components products could cause loss of human life, bodily injury or damage to property.

In developing your designs, please ensure that Isocom Components products are used within specified operating ranges as set forth in the most recent Isocom Components products specifications.

The Isocom Components products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These Isocom Components products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation Instruments, traffic signal instruments, combustion control instruments, medical Instruments, all types of safety devices, etc... Unintended Usage of Isocom Components products listed in this document shall be made at the customer's own risk.

Gallium arsenide (GaAs) is a substance used in the products described in this document. GaAs dust and fumes are toxic. Do not break, cut or pulverize the product, or use chemicals to dissolve them. When disposing of the products, follow the appropriate regulations. Do not dispose of the products with other industrial waste or with domestic garbage.

The products described in this document are subject to the foreign exchange and foreign trade laws.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by Isocom Components for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of Isocom Components or others.

The information contained herein is subject to change without notice.