

DESCRIPTION

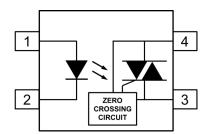
The MF303#, MF304#, MF306# and MF308# series of devices consist of a GaAs infrared emitting diode optically coupled to a monolithic silicon detector performing the function of a zero voltage crossing bilateral triac driver. They are designed for use with a discrete power triac in the interface of logic systems to equipment powered from 110 to 240 VAC lines.

FEATURES

- Zero Voltage Crossing
- \bullet V_{DRM}

MF303# Series 250V MF304# Series 400V MF306# Series 600V MF308# Series 800V

- Mini Flat Package
- Isolation Voltage 3750V_{RMS}
- Wide Operating Temperature Range -40°C to 110°C
- RoHS Compliant
- UL File E91231 designated as MF304# and MF306# where # is any number 0-9
- Safety Approval Pending for MF303# and MF308# Series


APPLICATIONS

- Solenoid / Valve Controls
- Light Controls
- AC Motor Drivers
- Temperature Controls
- AC Motor Starters
- Solid State Relays

ORDER INFORMATION

Available in Tape & Reel

- 1 Anode
- 2 Cathode
- 3 Main Terminal
- 4 Main Terminal

ABSOLUTE MAXIMUM RATINGS

Input

Forward Current 60mA

Peak Forward Current (1µs pulse 300pps)

Reverse Voltage 6V

Power Dissipation 100mW

Output

Off-State Output Terminal Voltage

 MF303# Series
 250V

 MF304# Series
 400V

 MF306# Series
 600V

 MF308# Series
 800V

 On-state RMS Current
 70mA_{RMS}

 Power Dissipation
 300mW

Total Package

Isolation Voltage 3750V_{RMS}
Operating Temperature -40 to 110°C
Storage Temperature -55 to 150°C

Lead Soldering Temperature (10s) 260°C

ISOCOM COMPONENTS 2004 LTD

Unit 25B, Park View Road West, Park View Industrial Estate Hartlepool, Cleveland, TS25 1PE, United Kingdom Tel: +44 (0)1429 863 609 Fax: +44 (0)1429 863 581 e-mail: sales@isocom.co.uk http://www.isocom.com

ISOCOM COMPONENTS ASIA LTD

Hong Kong Office
Block A, 8/F, Wah Hing Industrial Mansions
36 Tai Yau Street, San Po Kong, Kowloon, Hong Kong
Tel: +852 2995 9217 Fax: +852 8161 6292
e-mail: sales@isocom.com.hk

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise specified)

INPUT

Parameter	Symbol	Test Condition	Min	Тур.	Max	Unit
Forward Voltage	V_{F}	$I_F = 30 \text{mA}$			1.5	V
Reverse Current	I_R	$V_R = 6V$			10	μΑ

OUTPUT

Parameter	Symbol	Test Condition	Min	Тур.	Max	Unit
Peak Off-State Current	${ m I}_{ m DRM}$	V_{DRM} = Rated V_{DRM} I_F = 0mA $Note 1$			100	nA
On-State Voltage	V_{TM}	$I_{TM} = 100 \text{mA (peak)}$			3	V
Critical Rate of Rise of Off-State Voltage	dv/dt		1000			V/µs

COUPLED

Parameter	Symbol	Test Condition	Min	Тур.	Max	Unit
Input Trigger Current	I_{FT}	$V_{TM} = 3V$				mA
		MF3030 / MF3040			30	
		MF3060 / MF3080				
		MF3031 / MF3041			15	
		MF3061 / MF3081				
		MF3032 / MF3042			10	
		MF3062 / MF3082				
		MF3033 / MF3043			5	
		MF3063 / MF3083				
		MF306#			3	
		N O				
		Note 2				
Holding Current (either direction)	I_{H}			280		μΑ

Note 1: Test Voltage must be applied within dv/dt rating.

Note 2 : Guaranteed to trigger at an I_F value less than or equal to max I_{FT} , recommended I_F lies between Rated I_{FT} to Absolute Max I_F .

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise specified)

ZERO CROSSING CHARACTERISTICS

Parameter	Symbol	Test Condition	Min	Тур.	Max	Unit
Inhibit Voltage	$V_{ m INH}$	$I_F = Rated \ I_{FT}$ MT1-MT2 Voltage above which device will not trigger			20	V
Leakage Current in Inhibit State	I _{DRM 2}	$\begin{split} I_F &= \text{Rated } I_{FT} \\ V_{DRM} &= \text{Rated } V_{DRM} \\ Off\text{-state} \end{split}$			1000	μΑ

ISOLATION

Parameter	Symbol	Test Condition	Min	Тур.	Max	Unit
Isolation Voltage	V_{ISO}	R.H. = 40% to 60%	3750			V_{RMS}
		$t = 1 \min$				

Measured with input leads shorted together and output leads shorted together.

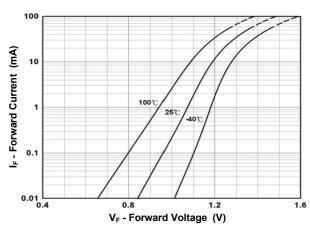


Fig 1 Forward Current vs Forward Voltage

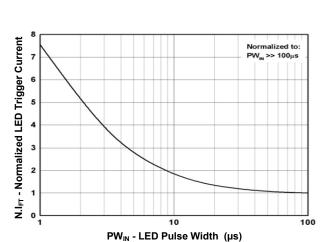


Fig 3 Normalized LED Trigger Current vs LED Pulse Width

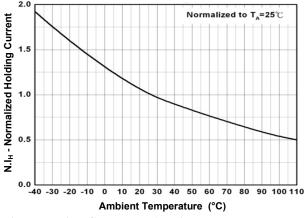


Fig 5 Holding Current vs Ambient Temperature

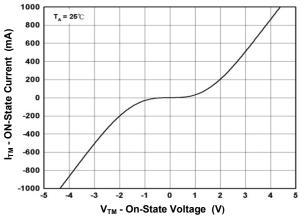


Fig 2 On-State Characteristics

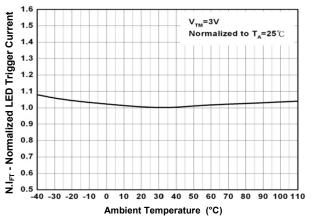


Fig 4 Normalized LED Trigger Current vs Ambient Temperature

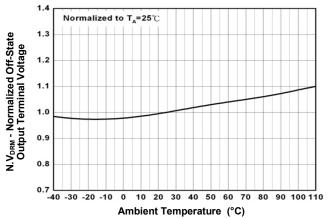


Fig 6 Off-State Output Terminal Voltage vs Ambient Temperature

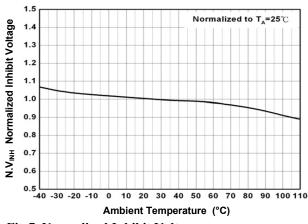


Fig 7 Normalized Inhibit Voltage vs Ambient Temperature

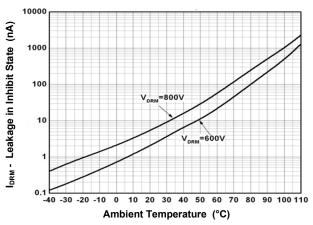


Fig 9 Leakage Current vs Ambient Temperature

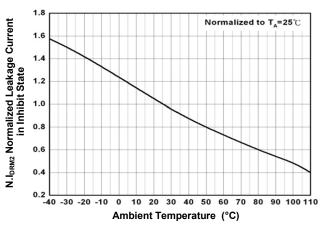
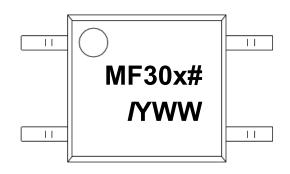


Fig 8 Normalized Leakage Current in Inhibit State vs Ambient Temperature



ORDER INFORMATION

MF303#, MF304#, MF306#, MF308# Series							
After PN	PN	Description	Packing quantity				
None	MF3030, MF3031, MF3032 MF3033	Surface Mount Tape & Reel	3000 pcs per reel				
	MF3040, MF3041, MF3042 MF3043						
	MF3060, MF3061, MF3062 MF3063, MF306#						
	MF3080, MF3081, MF3082 MF3083						

NOTE: MF3033 may be supported when ordering MF3030, MF3031, MF3032 MF3043 may be supported when ordering MF3040, MF3041, MF3042 MF3063, MF306# may be supported when ordering MF3060, MF3061, MF3062 MF3083 may be supported when ordering MF3080, MF3081, MF3082

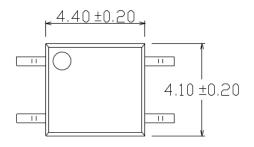
DEVICE MARKING

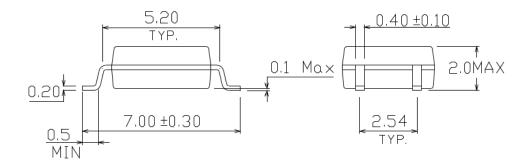
x x = 3, 4, 6, 8

= 0, 1, 2, 3,

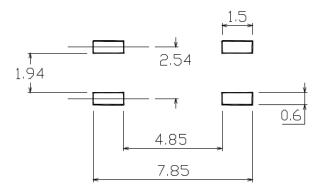
I Isocom

Y Year Code (A = 2010, B = 2011, etc.)

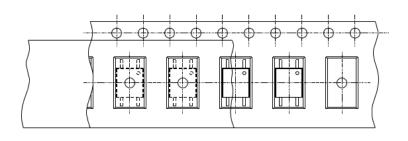

WW 2 digit Week Code


Note: Device Optional Marking

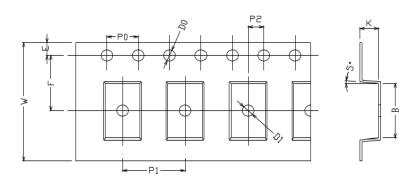
MF3033 MF303#
MF3043 MF3064
MF3063 MF3064
MF3083 MF308#



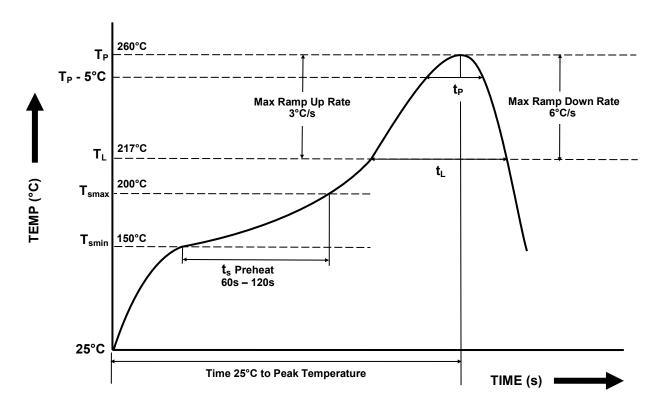
PACKAGE DIMENSIONS (mm)



RECOMMENDED PAD LAYOUT (mm)


TAPE AND REEL PACKAGING (mm)

Direction of feed from reel



Dimension No.	Α	В	Do	D1	E	F
Dimension(mm)	4.4±0.1	7.4±0.1	1.5±0.1/-0	1.5+0.1	1.75±0.1	7.5±0.1
Dimension No.	Ро	P1	P2	t	W	К
Dimension (mm)	4.0±0.15	8.0±0.1	2.0±0.1	0.25±0.03	16.0±0.2	2.4±0.1

IR REFLOW SOLDERING TEMPERATURE PROFILE

(One Time Reflow Soldering is Recommended)

Profile Details	Conditions
$\begin{array}{l} \textbf{Preheat} \\ \textbf{- Min Temperature } (T_{SMIN}) \\ \textbf{- Max Temperature } (T_{SMAX}) \\ \textbf{- Time } T_{SMIN} \ \text{to } T_{SMAX} \left(t_s \right) \end{array}$	150°C 200°C 60s – 120s
$\label{eq:soldering Zone} \begin{array}{l} \textbf{Soldering Zone} \\ \textbf{-} \ \text{Peak Temperature } (T_P) \\ \textbf{-} \ \text{Liquidous Temperature } (T_L) \\ \textbf{-} \ \text{Time within 5°C of Actual Peak Temperature } (T_P = 5°C) \\ \textbf{-} \ \text{Time maintained above } T_L \ (t_L) \\ \textbf{-} \ \text{Ramp Up Rate } (T_L \ \text{to } T_P) \\ \textbf{-} \ \text{Ramp Down Rate } (T_P \ \text{to } T_L) \end{array}$	260°C 217°C 30s 60s – 100s 3°C/s max 6°C/s max
Average Ramp Up Rate (T _{smax} to T _P)	3°C/s max
Time 25°C to Peak Temperature	8 minutes max

DISCLAIMER

Isocom Components is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing Isocom Components products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such Isocom Components products could cause loss of human life, bodily injury or damage to property.

In developing your designs, please ensure that Isocom Components products are used within specified operating ranges as set forth in the most recent Isocom Components products specifications.

The Isocom Components products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These Isocom Components products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation Instruments, traffic signal instruments, combustion control instruments, medical Instruments, all types of safety devices, etc... Unintended Usage of Isocom Components products listed in this document shall be made at the customer's own risk.

Gallium arsenide (GaAs) is a substance used in the products described in this document. GaAs dust and fumes are toxic. Do not break, cut or pulverize the product, or use chemicals to dissolve them. When disposing of the products, follow the appropriate regulations. Do not dispose of the products with other industrial waste or with domestic garbage.

The products described in this document are subject to the foreign exchange and foreign trade laws.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by Isocom Components for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of Isocom Components or others.

The information contained herein is subject to change without notice.